SH4 FIPR Optimizations: Difference between revisions

From dreamcast.wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 44: Line 44:
fmov.s fr7, @%[result] ! PIPELINE STALL!!!!
fmov.s fr7, @%[result] ! PIPELINE STALL!!!!
</pre>
</pre>
Now this is very very bad. FIPR has 5-8 cycles of latency, so every fucking call to FIPR, since the very next instruction tries to use the result before its been calculated, the entire pipeline must stall waiting for the result... FOR EVERY FIPR CALL.
Now this is very very bad. FIPR has 4-5 cycles of latency, so every fucking call to FIPR, since the very next instruction tries to use the result before its been calculated, the entire pipeline must stall waiting for the result... FOR EVERY FIPR CALL.
So you're losing MASSIVE perf benefits there.
So you're losing MASSIVE perf benefits there.
The solution? You have to pipeline your FIPRs so that while the previous FIPR call is still calculating, you're loading up and issuing the next FIPR call.
The solution? You have to pipeline your FIPRs so that while the previous FIPR call is still calculating, you're loading up and issuing the next FIPR call.
Line 71: Line 71:
__always_inline  
__always_inline  
float shz_pl_inner_loop(const float *d, const float *v1, const float *v2) {
float shz_pl_inner_loop(const float *d, const float *v1, const float *v2) {
     float fp_scratch[2];
     const float *td = d;
     uint32_t int_scratch;
    const float *tv1 = v1;
    const float *tv2 = v2;
     uint32_t stride;
    float result;


     asm volatile(R"(
     asm volatile(R"(
         ! Swap to back-bank so we don't need to clobber any FP regs.
         ! Swap to back-bank so we don't need to clobber any FP regs.
         frchg
         frchg
        ! s = 512 (stride: 128 floats * 4 bytes)
        mov    #2, %[s]
        shll8  %[s]              ! 2 << 8 = 512


         ! Load first vector into fv0 for first FIPR.
         ! Load first vector into fv0 for first FIPR.
        xor    %[s], %[s]
         fmov.s  @%[td]+, fr0       ! fr0 = d[0]
         fmov.s  @%[d]+, fr0
         fmov.s  @%[td]+, fr1       ! fr1 = d[1]
        add    #64, %[s]
         fmov.s  @%[td]+, fr2       ! fr2 = d[2]
         fmov.s  @%[d]+, fr1
         fmov.s  @%[td]+, fr3       ! fr3 = d[3]
        add    #64, %[s]
         fmov.s  @%[d]+, fr2
        add    #16, %[r]
         fmov.s  @%[d]+, fr3


         ! Load second vector into fv4 for first FIPR
         ! Load second vector into fv4 for first FIPR
         fmov.s  @%[v1], fr4
         fmov.s  @%[tv1], fr4       ! fr4 = v1[0]
         add    %[s], %[v1]
         add    %[s], %[tv1]      ! tv1 -> v1[128]
         fmov.s  @%[v2], fr5
         fmov.s  @%[tv2], fr5       ! fr5 = v2[0]
         add    %[s], %[v2]
         add    %[s], %[tv2]      ! tv2 -> v2[128]
         fmov.s  @%[v1], fr6
         fmov.s  @%[tv1], fr6       ! fr6 = v1[128]
         add    %[s], %[v1]
         add    %[s], %[tv1]      ! tv1 -> v1[256]
         fmov.s  @%[v2], fr7
         fmov.s  @%[tv2], fr7       ! fr7 = v2[128]
         add    %[s], %[v2]
         add    %[s], %[tv2]      ! tv2 -> v2[256]


         ! Issue first FIPR
         ! Issue first FIPR
         fipr    fv0, fv4
         fipr    fv0, fv4           ! fr7 = FIPR1 result
        ! DO NOT SAVE THE RESULT YET


         ! Load first vector into fv8 for second FIPR.
         ! Load first vector into fv8 for second FIPR.
         fmov.s  @%[d]+, fr8
         fmov.s  @%[td]+, fr8       ! fr8  = d[4]
         fmov.s  @%[d]+, fr9
         fmov.s  @%[td]+, fr9       ! fr9  = d[5]
         fmov.s  @%[d]+, fr10
         fmov.s  @%[td]+, fr10     ! fr10 = d[6]
         fmov.s  @%[d]+, fr11
         fmov.s  @%[td]+, fr11     ! fr11 = d[7]


         ! Load second vector into fv12 for second FIPR.
         ! Load second vector into fv12 for second FIPR.
         fmov.s  @%[v1], fr12
         fmov.s  @%[tv1], fr12     ! fr12 = v1[256]
         add    %[s], %[v1]
         add    %[s], %[tv1]      ! tv1 -> v1[384]
         fmov.s  @%[v2], fr13
         fmov.s  @%[tv2], fr13     ! fr13 = v2[256]
         add    %[s], %[v2]
         add    %[s], %[tv2]      ! tv2 -> v2[384]
         fmov.s  @%[v1], fr14
         fmov.s  @%[tv1], fr14     ! fr14 = v1[384]
         add    %[s], %[v1]
         add    %[s], %[tv1]      ! tv1 -> v1[512]
         fmov.s  @%[v2], fr15
         fmov.s  @%[tv2], fr15     ! fr15 = v2[384]
         add    %[s], %[v2]
         add    %[s], %[tv2]      ! tv2 -> v2[512]


         ! Issue second FIPR
         ! Issue second FIPR
         fipr    fv8, fv12
         fipr    fv8, fv12         ! fr15 = FIPR2 result
        ! Store result from FIRST FIPR now that it's ready
         fmov.s  fr7, @-r15        ! push FIPR1 result onto stack
         fmov.s  fr7, @-%[r]


         ! Load first vector into fv0 for third FIPR
         ! Load first vector into fv0 for third FIPR
         fmov.s  @%[d]+, fr0
         fmov.s  @%[td]+, fr0       ! fr0 = d[8]
         fmov.s  @%[d]+, fr1
         fmov.s  @%[td]+, fr1       ! fr1 = d[9]
         fmov.s  @%[d]+, fr2
         fmov.s  @%[td]+, fr2       ! fr2 = d[10]
         fmov.s  @%[d]+, fr3
         fmov.s  @%[td]+, fr3       ! fr3 = d[11]


         ! Load second vector into fv4 for third FIPR
         ! Load second vector into fv4 for third FIPR
         fmov.s  @%[v1], fr4
         fmov.s  @%[tv1], fr4       ! fr4 = v1[512]
         add    %[s], %[v1]
         add    %[s], %[tv1]      ! tv1 -> v1[640]
         fmov.s  @%[v2], fr5
         fmov.s  @%[tv2], fr5       ! fr5 = v2[512]
         add    %[s], %[v2]
         add    %[s], %[tv2]      ! tv2 -> v2[640]
         fmov.s  @%[v1], fr6
         fmov.s  @%[tv1], fr6       ! fr6 = v1[640]
         add    %[s], %[v1]
         add    %[s], %[tv1]      ! tv1 -> v1[768]
         fmov.s  @%[v2], fr7
         fmov.s  @%[tv2], fr7       ! fr7 = v2[640]
         add    %[s], %[v2]
         add    %[s], %[tv2]      ! tv2 -> v2[768]
       
 
         ! Issue third FIPR
         ! Issue third FIPR
         fipr    fv0, fv4
         fipr    fv0, fv4           ! fr7 = FIPR3 result
        ! Store result from SECOND FIPR now that it's ready.
         fmov.s  fr15, @-r15        ! push FIPR2 result onto stack
         fmov.s  fr15, @-%[r]


         ! Load first vector into fv8 for fourth FIPR
         ! Load first vector into fv8 for fourth FIPR
         fmov.s  @%[d]+, fr8
         fmov.s  @%[td]+, fr8       ! fr8  = d[12]
         fmov.s  @%[d]+, fr9
         fmov.s  @%[td]+, fr9       ! fr9  = d[13]
         fmov.s  @%[d]+, fr10
         fmov.s  @%[td]+, fr10     ! fr10 = d[14]
         fmov.s  @%[d]+, fr11
         fmov.s  @%[td]+, fr11     ! fr11 = d[15]


         ! Load second vector into fv12 for fourth FIPR
         ! Load second vector into fv12 for fourth FIPR
         fmov.s  @%[v1], fr12
         fmov.s  @%[tv1], fr12     ! fr12 = v1[768]
         add    %[s], %[v1]
         add    %[s], %[tv1]      ! tv1 -> v1[896]
         fmov.s  @%[v2], fr13
         fmov.s  @%[tv2], fr13     ! fr13 = v2[768]
         add    %[s], %[v2]
         add    %[s], %[tv2]      ! tv2 -> v2[896]
         fmov.s  @%[v1], fr14
         fmov.s  @%[tv1], fr14     ! fr14 = v1[896]
         fmov.s  @%[v2], fr15
         fmov.s  @%[tv2], fr15     ! fr15 = v2[896]


         ! Issue fourth FIPR
         ! Issue fourth FIPR
         fipr    fv8, fv12
         fipr    fv8, fv12         ! fr15 = FIPR4 result


         ! Add up results from previous FIPRs while we wait
         ! Add up results from previous FIPRs while we wait
         fmov.s  @%[r]+, fr0
         fmov.s  @r15+, fr0         ! pop FIPR2 result
         fmov.s  @%[r]+, fr1
         fmov.s  @r15+, fr1         ! pop FIPR1 result
         fadd    fr1, fr0
         fadd    fr1, fr0           ! fr0 = FIPR1 + FIPR2
         fadd    fr7, fr0
         fadd    fr7, fr0           ! fr0 += FIPR3
        add    #-8, %[r]


         ! Add result from fourth FIPR now that it's ready
         ! Add result from fourth FIPR now that it's ready
         fadd    fr15, fr0
         fadd    fr15, fr0         ! fr0 += FIPR4
 
        ! Store final result
        fmov.s  fr0, @%[r]


         ! Swap back to primary FP register bank
         ! Transfer result to primary bank via FPUL
         frchg
        flds    fr0, FPUL          ! secondary fr0 -> FPUL
        frchg                      ! Switch back to primary FP bank
         fsts    FPUL, %[result]    ! FPUL -> result register (primary bank)
     )"
     )"
     : [d] "+&r" (d), [v1] "+r" (v1), [v2] "+r" (v2),
     : [td] "+r" (td), [tv1] "+r" (tv1), [tv2] "+r" (tv2),
       [r] "+r" (fp_scratch), [s] "=&r" (int_scratch),
       [s] "=r" (stride), [result] "=f" (result)
      "=m" (*fp_scratch));
    :
    : "memory");


     return fp_scratch[0];
     return result;
}
}
</pre>
</pre>

Latest revision as of 18:42, 16 February 2026

Yo, guys. At like 1AM @ian micheal got me looking at pl_mpeg's audio decoder to see if I could see any potential gainz... So here is its innermost hottest audio synthesis loop:

for (int i = 32; i; --i) {
    float u;
    u = pl_fipr(d[0], d[1], d[2], d[3], v1[0], v2[0], v1[128], v2[128]);
    u += pl_fipr(d[4], d[5], d[6], d[7], v1[256], v2[256], v1[384], v2[384]);
    u += pl_fipr(d[8], d[9], d[10], d[11], v1[512], v2[512], v1[640], v2[640]);
    u += pl_fipr(d[12], d[13], d[14], d[15], v1[768], v2[768], v1[896], v2[896]);
    d += 32;
    v1++;
    v2++;
    *out++ = (short)((int)u >> 16);
}

Which... you'd think would be preeeetty efficient, right? 4 back-to-back FIPRs? I mean, it is hella gainzy compared to not using FIPR.

But there are two problems with back-to-back FIPR-y, I wanna teach anyone interested:

1) Very often one of the vector arguments stays constant between FIPR calls, but unfortunately the compiler is too dumb to not reload all 8 registers between calls regardless.

  • LUCKILY every argument to these FIPRs is unique so this is not applicable, but... very often that's a perf destroyer.

2) THE COMPILER CANNOT PIPELINE FIPR FOR SHIT.

  • VERY applicable here. You know what the ASM looks like for these FIPR calls? Something like this:
! load first vector arg into fv0 (nothing wrong with this)
fmov.s @%[d]+, fr0
fmov.s @%[d}+, fr1
fmov.s @%[d]+, fr2
fmov.s @%[d]+, fr3

! load second vector arg into fv4 (nothing wrong with this)
fmov.s @%[v1], fr4
add    %[offset], @[v1]
fmov.s @%[v2], fr5
add    %[offset], @[v2]
fmov.s @%[v1], fr6
fmov.s @%[v2], fr7

! issue actual FIPR calculation
fipr fv0, fv4

! VERY NEXT INSTRUCTION TRY TO STORE THE RESULT
fmov.s fr7, @%[result] ! PIPELINE STALL!!!!

Now this is very very bad. FIPR has 4-5 cycles of latency, so every fucking call to FIPR, since the very next instruction tries to use the result before its been calculated, the entire pipeline must stall waiting for the result... FOR EVERY FIPR CALL. So you're losing MASSIVE perf benefits there. The solution? You have to pipeline your FIPRs so that while the previous FIPR call is still calculating, you're loading up and issuing the next FIPR call.

So I wrote a new routine that replaces that inner loop body doing manually pipelined FIPR calls... This should be way better:

for (int i = 32; i; --i) {
#if 0 // Old FIPR path which didn't pipeline for shit.
    float u;
    u = pl_fipr(d[0], d[1], d[2], d[3], v1[0], v2[0], v1[128], v2[128]);
    u += pl_fipr(d[4], d[5], d[6], d[7], v1[256], v2[256], v1[384], v2[384]);
    u += pl_fipr(d[8], d[9], d[10], d[11], v1[512], v2[512], v1[640], v2[640]);
    u += pl_fipr(d[12], d[13], d[14], d[15], v1[768], v2[768], v1[896], v2[896]);
#else // New hand-written FIPR path with manual pipelining
    float u = shz_pl_inner_loop(d, v1, v2);
#endif
    d += 32;
    v1++;
    v2++;
    *out++ = (short)((int)u >> 16);
}

Where the new implementation is this inline ASM:

__always_inline 
float shz_pl_inner_loop(const float *d, const float *v1, const float *v2) {
    const float *td = d;
    const float *tv1 = v1;
    const float *tv2 = v2;
    uint32_t stride;
    float result;

    asm volatile(R"(
        ! Swap to back-bank so we don't need to clobber any FP regs.
        frchg

        ! s = 512 (stride: 128 floats * 4 bytes)
        mov     #2, %[s]
        shll8   %[s]               ! 2 << 8 = 512

        ! Load first vector into fv0 for first FIPR.
        fmov.s  @%[td]+, fr0       ! fr0 = d[0]
        fmov.s  @%[td]+, fr1       ! fr1 = d[1]
        fmov.s  @%[td]+, fr2       ! fr2 = d[2]
        fmov.s  @%[td]+, fr3       ! fr3 = d[3]

        ! Load second vector into fv4 for first FIPR
        fmov.s  @%[tv1], fr4       ! fr4 = v1[0]
        add     %[s], %[tv1]       ! tv1 -> v1[128]
        fmov.s  @%[tv2], fr5       ! fr5 = v2[0]
        add     %[s], %[tv2]       ! tv2 -> v2[128]
        fmov.s  @%[tv1], fr6       ! fr6 = v1[128]
        add     %[s], %[tv1]       ! tv1 -> v1[256]
        fmov.s  @%[tv2], fr7       ! fr7 = v2[128]
        add     %[s], %[tv2]       ! tv2 -> v2[256]

        ! Issue first FIPR
        fipr    fv0, fv4           ! fr7 = FIPR1 result

        ! Load first vector into fv8 for second FIPR.
        fmov.s  @%[td]+, fr8       ! fr8  = d[4]
        fmov.s  @%[td]+, fr9       ! fr9  = d[5]
        fmov.s  @%[td]+, fr10      ! fr10 = d[6]
        fmov.s  @%[td]+, fr11      ! fr11 = d[7]

        ! Load second vector into fv12 for second FIPR.
        fmov.s  @%[tv1], fr12      ! fr12 = v1[256]
        add     %[s], %[tv1]       ! tv1 -> v1[384]
        fmov.s  @%[tv2], fr13      ! fr13 = v2[256]
        add     %[s], %[tv2]       ! tv2 -> v2[384]
        fmov.s  @%[tv1], fr14      ! fr14 = v1[384]
        add     %[s], %[tv1]       ! tv1 -> v1[512]
        fmov.s  @%[tv2], fr15      ! fr15 = v2[384]
        add     %[s], %[tv2]       ! tv2 -> v2[512]

        ! Issue second FIPR
        fipr    fv8, fv12          ! fr15 = FIPR2 result
        fmov.s  fr7, @-r15         ! push FIPR1 result onto stack

        ! Load first vector into fv0 for third FIPR
        fmov.s  @%[td]+, fr0       ! fr0 = d[8]
        fmov.s  @%[td]+, fr1       ! fr1 = d[9]
        fmov.s  @%[td]+, fr2       ! fr2 = d[10]
        fmov.s  @%[td]+, fr3       ! fr3 = d[11]

        ! Load second vector into fv4 for third FIPR
        fmov.s  @%[tv1], fr4       ! fr4 = v1[512]
        add     %[s], %[tv1]       ! tv1 -> v1[640]
        fmov.s  @%[tv2], fr5       ! fr5 = v2[512]
        add     %[s], %[tv2]       ! tv2 -> v2[640]
        fmov.s  @%[tv1], fr6       ! fr6 = v1[640]
        add     %[s], %[tv1]       ! tv1 -> v1[768]
        fmov.s  @%[tv2], fr7       ! fr7 = v2[640]
        add     %[s], %[tv2]       ! tv2 -> v2[768]

        ! Issue third FIPR
        fipr    fv0, fv4           ! fr7 = FIPR3 result
        fmov.s  fr15, @-r15        ! push FIPR2 result onto stack

        ! Load first vector into fv8 for fourth FIPR
        fmov.s  @%[td]+, fr8       ! fr8  = d[12]
        fmov.s  @%[td]+, fr9       ! fr9  = d[13]
        fmov.s  @%[td]+, fr10      ! fr10 = d[14]
        fmov.s  @%[td]+, fr11      ! fr11 = d[15]

        ! Load second vector into fv12 for fourth FIPR
        fmov.s  @%[tv1], fr12      ! fr12 = v1[768]
        add     %[s], %[tv1]       ! tv1 -> v1[896]
        fmov.s  @%[tv2], fr13      ! fr13 = v2[768]
        add     %[s], %[tv2]       ! tv2 -> v2[896]
        fmov.s  @%[tv1], fr14      ! fr14 = v1[896]
        fmov.s  @%[tv2], fr15      ! fr15 = v2[896]

        ! Issue fourth FIPR
        fipr    fv8, fv12          ! fr15 = FIPR4 result

        ! Add up results from previous FIPRs while we wait
        fmov.s  @r15+, fr0         ! pop FIPR2 result
        fmov.s  @r15+, fr1         ! pop FIPR1 result
        fadd    fr1, fr0           ! fr0 = FIPR1 + FIPR2
        fadd    fr7, fr0           ! fr0 += FIPR3

        ! Add result from fourth FIPR now that it's ready
        fadd    fr15, fr0          ! fr0 += FIPR4

        ! Transfer result to primary bank via FPUL
        flds    fr0, FPUL          ! secondary fr0 -> FPUL
        frchg                      ! Switch back to primary FP bank
        fsts    FPUL, %[result]    ! FPUL -> result register (primary bank)
    )"
    : [td] "+r" (td), [tv1] "+r" (tv1), [tv2] "+r" (tv2),
      [s] "=r" (stride), [result] "=f" (result)
    :
    : "memory");

    return result;
}