Rust on Dreamcast
WIP: This article is currently under construction. The repos linked to below are not yet live.
Rust is a systems programming language rising in popularity which emphasizes memory safety and performance. Due to its operating at a low level, it is an ideal candidate for running on the Dreamcast. Doing so presents a bit of a challenge, however, as the official Rust compiler is based on the LLVM toolchain infrastructure, which does not support the Dreamcast CPU's SuperH architecture. Dreamcast programming is instead done with GCC, the GNU Compiler Collection. There are currently two viable solutions to this challenge:
- rustc_codegen_gcc: A libgccjit-based codegen backend for rustc (preferred method)
- gccrs: a Rust frontend for GCC
Neither solution is complete at this time, and both are under active development. Using either of them to target the Dreamcast should be considered experimental. rustc_codegen_gcc is quite further along, however, and is usable with some patience with limitations and rapid change. libcore and liballoc work, and KallistiOS bindings are planned. On the other hand, gccrs can compile for Dreamcast, but is in a very early stage, with much of the language unimplemented and no libcore support. Below we will focus on using rustc_codegen_gcc. For more information on using gccrs, see the gccrs page.
Using rustc_codegen_gcc to develop on Dreamcast
With rustc_codegen_gcc, we can interface the standard rustc compiler frontend with libgccjit, a GCC code-generation API. With the help of the Rust-for-Dreamcast repo and the kos-rs crate containing KallistiOS bindings, we can set up rustc_codegen_gcc to compile Rust programs with core and alloc support (but not the entirety of std). Rust-for-Dreamcast includes wrapper scripts to invoke the rustc and cargo tools in a familiar way. The familiar borrow checker still works, and one can import and use no_std
crates. Despite this support, rustc_codegen_gcc is still in active development, so if using such a setup, expect that things may change rapidly over time. We will need to use some patches and workarounds to make this solution work. See the rustc_codegen_gcc progress reports for more information on the project's progress.
What Works
- libcore -- the core components of the language for running on bare metal (basics like integers, floats, enums, bools, chars, tuples, arrays, slices, closures, iterators, etc.)
- liballoc -- the core components of the language that require a heap, including collections (Vec, String, Box, etc.)
- linking to KallistiOS -- KallistiOS and kos-ports can be used if one manually manages interoperating with C via unsafe
- including
no_std
crates with thecargo
build system
What's Planned
- libc support -- Adding KallistiOS support to Rust's libc crate
- libstd support -- built-in language support for I/O, networking, threads, time and date, HashMap/HashSet, unwinding on panic, etc.
- KallistiOS bindings -- properly idiomatic Rust support for KallistiOS
- Inclusion as a tier 3 target in Rust
Prerequisites
We will build rustc_codegen_gcc support for the Dreamcast in the instructions below. Before we begin, though:
- You must already have a KallistiOS development environment set up. This means you have created a cross-compiling toolchain for SH4, you have set up your KallistiOS
environ.sh
file, and you have built KallistiOS with it. Ideally, you will already have some familiarity with KallistiOS. See Getting Started with Dreamcast development for more information, as well as the KallistiOS Doxygen.- For the purposes of this guide, we will assume you are using the standard paths for Dreamcast development tools; i.e. your environment is set up in
/opt/toolchains/dc
. Some included scripts and examples may assume this. - Your KallistiOS installation will need its floating point precision setting set to
m4-single
. At this time, rustc_codegen_gcc support will not compile with KallistiOS's default-m4-single-only
setting. This setting can be changed in KallistiOS'senviron.sh
, but changing the setting may require you to rebuild your toolchain if you have not built it withm4-single
support (which is off by default, but can be enabled in theconfig.mk
file). Once you modify the setting in yourenviron.sh
and re-source theenviron.sh
, you'll need to rebuild KallistiOS with amake clean
andmake
for the changes to take effect. Keep in mind, however, that because KallistiOS doesn't officially support-m4-single
yet, some things may be broken, especially libraries in kos-ports that haven't been heavily tested.
- For the purposes of this guide, we will assume you are using the standard paths for Dreamcast development tools; i.e. your environment is set up in
- You must already have a relatively up-to-date Rust installation, either using your operating system's package manager or rustup. Ideally, you will already have some familiarity with Rust's tools.
Building a cross-compiling libgccjit.so for rustc_codegen_gcc
Before we can use rustc_codegen_gcc, we must compile libgccjit.so
, the libgccjit library, for your system. This entails building a unique copy of the SH4 toolchain in its own directory under /opt/toolchains/dc/rust
, using a forked version of GCC with enhancements made to libgccjit.
We will first clone the rust-for-dreamcast
repository, which contains various supporting files needed to create Rust support for Dreamcast. Using git
, clone the rust-for-dreamcast
repository to /opt/toolchains/dc/rust
:
git clone https://github.com/darcagn/rust-for-dreamcast /opt/toolchains/dc/rust
Enter your KallistiOS installation's dc-chain
directory:
cd /opt/toolchains/dc/kos/utils/dc-chain
Clear out any existing build files:
make clean-keep-archives
Copy the necessary toolchain patches to your dc-chain
setup:
cp /opt/toolchains/dc/rust/toolchain/*.diff patches/
Copy the rustc_codegen_gcc configuration file into place:
cp /opt/toolchains/dc/rust/toolchain/config.mk.rustc.sample config.mk
Make any desired changes to the configuration (e.g., change makejobs=-j2
to the number of CPU threads you'd like to use during compilation), and then compile the SH4 toolchain:
make build-sh4
When this command is completed successfully, a libgccjit.so
will be installed to /opt/toolchains/dc/rust/sh-elf/lib/libgccjit.so
.
Building rustc_codegen_gcc
Clone the rustc_codegen_gcc to your rust directory:
git clone https://github.com/rust-lang/rustc_codegen_gcc.git /opt/toolchains/dc/rust/rustc_codegen_gcc
rustc_codegen_gcc needs a config.toml
file that specifies the location of libgccjit.so
. Let's write the the gcc-path
to the location of our libgccjit.so
library file in this file:
echo 'gcc-path = "/opt/toolchains/dc/rust/sh-elf/lib"' > /opt/toolchains/dc/rust/rustc_codegen_gcc/config.toml
The rust-for-dreamcast
repository contains scripts and wrappers to assist you in building rustc_codegen_gcc and using it in conjunction with cargo
and rustc
. We'll need to add the path to those scripts to our PATH
environment variable:
export PATH="/opt/toolchains/dc/rust/bin:$PATH"
You may also want to add the above lines to your shell's startup file or else you'll need to run them every time you open a new shell.
Now we can use the included scripts to set up rustc_codegen_gcc. Various patches need to be applied to rustc_codegen_gcc for it to compile properly for our target platform. Let's apply them:
rcg-dc patch
Now we can prepare and build rustc_codegen_gcc!
rcg-dc prepare rcg-dc build
If all went well, rustc_codegen_gcc will have built successfully. You'll be able to invoke rcg-dc to manage the rustc_codegen_gcc for Dreamcast installation, and you'll be able to invoke rustc for Dreamcast through a wrapper script command rustc-dc, and likewise with cargo and its wrapper cargo-dc.
Compiling individual modules into object files with rustc
To incorporate Rust source files into a standard KallistiOS Makefile
-based project, you can use the rustc-dc
wrapper. If we assume the Rust module file is named example.rs
, you'll need to add example.o
as an object file in your Makefile
's OBJS =
declaration. Additionally, you'll need to add the following lines so that make
knows how to compile Rust modules into .o
object files:
%.o: %.rs
rustc-dc $< -o $@
Alternatively, you can add those lines to your KallistiOS Makefile.rules
file to avoid having to place it in every project's Makefile
.
An example "Hello, world!" program built in this style which also demonstrates basic C interoperation is included with the Rust-for-Dreamcast repository, located at examples/rustc-hello
.
Creating a new project using Cargo
cargo-dc
simplifies invoking cargo
and creating Dreamcast crates. When using cargo
in this setup, we will need to compile our program and all crate code into a static library .a
file, and link it with a KallistiOS trampoline function to start the Rust code. Your Rust code will start with the function you specify as rust_main()
. Once you cargo-dc build
your Dreamcast code into a .a
file, use cargo-dc link
to automatically link it with this KallistiOS trampoline function and generate an ELF file. Instructions to do this follow.
First, let's clone the kos-rs repo:
git clone https://github.com/darcagn/kos-rs /opt/toolchains/dc/rust/kos-rs
Create a new crate using cargo-dc
:
cargo-dc new example --lib
Change the crate to a static library in Cargo.toml
by changing the crate-type
as follows:
crate-type = ["staticlib"]
Add the kos-rs crate to your Cargo.toml
file:
[dependencies]
kos = { package = "kos-rs", path = "/opt/toolchains/dc/rust/kos-rs" }
Add the following function to your crate's src/lib.rs
file:
#[no_mangle]
pub extern "C" fn rust_main(_argc: i32, _argv: *const u8) -> i32 {
[...]
return 0;
}
The rust_main()
function will serve as the entry point to your Rust code.
An example "Hello, world!" style program built using kos-rs and cargo-dc
is included with the Rust-for-Dreamcast repository, located at examples/cargo-hello
. Type cargo-dc build
to build the project, then cargo-dc link
to link against KallistiOS and generate a cargo-hello.elf
. Make sure you have your KallistiOS environ.sh
sourced in your terminal before running the link command.
Integrating a Cargo project with a KallistiOS project
We can also build a crate based on kos-rs and integrate the Rust code with other C code and KOS libraries. An example rotating 3D cube program built using kos-rs and cargo-dc
combined with a Makefile
-based KallistiOS project is included with the Rust-for-Dreamcast repository, located at examples/rust_cube
. Type cargo-dc build
to build the project, then invoke make
to build the KallistiOS project and link the Rust code within it.
In-progress/future goals
- Create implementation for KOS/newlib in Rust's
libc
crate - Create implementation for Rust's
std
library using libc support - Expand bindings for KOS APIs in the
kos-rs
crate - Continue to evolve KOS/Dreamcast support alongside the maturation of
rustc_codegen_gcc
- Add sh-dreamcast as an official tier 3 Rust target
- Expand
cargo-dc
functionality, including integrating Rust-based disc tools to generate disc images