Rust on Dreamcast
Support for Rust on Dreamcast is early, but currently possible if one is willing to endure the experimental nature of setting it up and lack of stability in implementations. Doing so presents a bit of a challenge as the official Rust compiler is based on the LLVM toolchain infrastructure, which does not support the Dreamcast CPU's SuperH architecture. Dreamcast programming is instead done with GCC, the GNU Compiler Collection. There are currently two viable solutions to this challenge:
- rustc_codegen_gcc: A libgccjit-based codegen backend for rustc (preferred method)
- gccrs: a Rust frontend for GCC
rustc_codegen_gcc
With rustc_codegen_gcc, we can interface the standard rustc compiler frontend with libgccjit, a GCC code-generation API. With the help of the Rust-for-Dreamcast repo and the kos-rust crate containing KallistiOS bindings, we can set up rustc_codegen_gcc to compile Rust programs with core and alloc support (but not the entirety of std. Rust-for-Dreamcast includes wrapper scripts to invoke rustc and cargo tools in a familiar way. The familiar borrow checker still works, and one can import and use no_std
crates. Despite this support, rustc_codegen_gcc is still in active development, so if using such a setup, expect that things may change rapidly over time. See the rustc_codegen_gcc progress reports for more information.
We will build rustc_codegen_gcc support for the Dreamcast in the instructions below. Before we begin, though:
- You must already have a KallistiOS development environment set up. This means you have created a cross-compiling toolchain for SH4 and you have built KallistiOS with it. See Getting Started with Dreamcast development for more information.
- For the purposes of this guide, we will assume you are using the standard paths for Dreamcast development tools; i.e. your environment is set up in
/opt/toolchains/dc
. - Your KallistiOS installation will need its floating point precision setting set to
m4-single
. This setting is available in theenviron.sh
, but changing the setting may require you to rebuild your main toolchain if you have not built it withm4-single
support. Once you modify the setting in yourenviron.sh
and re-source theenviron.sh
, you'll need to rebuild KallistiOS for the changes to take effect.
- For the purposes of this guide, we will assume you are using the standard paths for Dreamcast development tools; i.e. your environment is set up in
- You must already have a relatively up-to-date Rust installation, either using your operating system's package manager or rustup.
Building a cross-compiling libgccjit.so for rustc_codegen_gcc
Before we can use rustc_codegen_gcc, we must compile libgccjit.so
, the libgccjit library, for your system. This entails building a unique copy of the SH4 toolchain in its own directory under /opt/toolchains/dc/rust
, using a forked version of GCC with enhancements made to libgccjit.
We will first clone the rust-for-dreamcast
repository, which contains various supporting files needed to create Rust support for Dreamcast. Using git
, clone the rust-for-dreamcast
repository to /opt/toolchains/dc/rust
:
git clone https://github.com/darcagn/rust-for-dreamcast /opt/toolchains/dc/rust
Enter your KallistiOS installation's dc-chain
directory:
cd /opt/toolchains/dc/kos/utils/dc-chain
Clear out any existing build files:
make clean-keep-archives
Copy the necessary toolchain patches to your dc-chain
setup:
cp /opt/toolchains/dc/rust/toolchain/*.diff patches/
Copy the rustc_codegen_gcc configuration file into place:
cp /opt/toolchains/dc/rust/toolchain/config.mk.rustc_codegen_gcc.sample config.mk
Make any desired changes to the configuration (e.g., change makejobs=-j2
to the number of CPU threads you'd like to use during compilation), and then compile the SH4 toolchain:
make build-sh4
When this command is completed successfully, a libgccjit.so
will be installed to /opt/toolchains/dc/rust/sh-elf/lib/libgccjit.so
.
Building rustc_codegen_gcc
The rust-for-dreamcast
repository contains scripts and wrappers to assist you in building rustc_codegen_gcc and using it in conjunction with cargo
and rustc
. We'll need to add the path to those scripts to our PATH
environment variable:
export PATH="/opt/toolchains/dc/rust/bin:$PATH"
You may also want to add the above lines to your shell's startup file or else you'll need to run them every time you open a new shell.
Clone the rustc_codegen_gcc to your rust directory:
git clone https://github.com/rust-lang/rustc_codegen_gcc.git /opt/toolchains/dc/rust/rustc_codegen_gcc
Set the gcc_path
file to the location of our libgccjit.so
library file:
echo /opt/toolchains/dc/rust/sh-elf/lib > /opt/toolchains/dc/rust/rustc_codegen_gcc/gcc_path
Various patches need to be applied to rustc_codegen_gcc for it to compile properly for our target platform. Let's apply them:
rcg-dc patch
Now let's build rustc_codegen_gcc!
rcg-dc prepare rcg-dc build
If all went well, rustc_codegen_gcc will have built successfully. You'll be able to invoke rcg-dc to manage the rustc_codgen_gcc for Dreamcast installation, and you'll be able to invoke rustc for Dreamcast through a wrapper script command rustc-dc, and likewise with cargo and its wrapper cargo-dc.
Compiling individual modules into object files with rustc
rustc-dc
generates .o
object files with rustc
for inclusion in a KallistiOS Makefile
-based project. If we assume the module file is named example.rs
, you'll need to add example.o
as an object file in your Makefile
's OBJS =
declaration. Additionally, you'll need to add the following lines so that make
knows how to compile Rust modules into .o
object files:
%.o: %.rs
rustc-dc $< -o $@
Alternatively, you can add those lines to your KallistiOS Makefile.rules
file to avoid having to place it in every project's Makefile
.
An example "Hello, world!" program built in this style which also demonstrates basic C interoperation is included with the Rust-for-Dreamcast repository, located at examples/rustc-hello
.
Creating a new project using Cargo
cargo-dc
simplifies invoking cargo
and creating Dreamcast crates. When using cargo
in this setup, we will need to compile our program and all crate code into a static library .a
file, and link it with a KallistiOS trampoline function to start the Rust code. Your Rust code will start with the function you specify as rust_main()
. Once you cargo-dc build
your Dreamcast code into a .a
file, use cargo-dc link
to automatically link it with this KallistiOS trampoline function and generate an ELF file. Instructions to do this follow.
First, let's clone the kos-rs repo:
git clone https://github.com/darcagn/kos-rs /opt/toolchains/dc/rust/kos-rs
Create a new crate using cargo-dc
:
cargo-dc new example --lib
Change the crate to a static library in Cargo.toml
by changing the crate-type
as follows:
crate-type = ["staticlib"]
Add the kos-rs crate to your Cargo.toml
file:
[dependencies]
kos = { package = "kos-rs", path = "/opt/toolchains/dc/rust/kos-rs" }
Add the following function to your crate's src/lib.rs
file:
#[no_mangle]
pub extern "C" fn rust_main(_argc: i32, _argv: *const u8) -> i32 {
[...]
return 0;
}
The rust_main()
function will serve as the entry point to your Rust code.
An example "Hello, world!" style program built using kos-rs and cargo-dc
is included with the Rust-for-Dreamcast repository, located at examples/cargo-hello
. Type cargo-dc build
to build the project, then cargo-dc link
to link against KallistiOS and generate a cargo-hello.elf
. Make sure you have your KallistiOS environ.sh
sourced in your terminal before running the link command.
gccrs
gccrs implements a new Rust compiler frontend for GCC. This essentially means creating a separate new Rust compiler from the ground up using the GCC toolchain infrastructure. This project is in early stages and is targeting the Rust 1.49 revision from December 2020. As of this writing (February 2024), it is not yet able to compile Rust's libcore
, so many basic language features are unimplemented or not functional. Additionally, Rust standard tooling like cargo
is not available. Borrow checking is not implemented, but the project plans to later use the next-generation Rust borrow checker Polonius from the official Rust project.
It is possible to use this compiler by building the GCC 14.0.1-dev toolchain or the gccrs latest toolchain. GCC 14.0.1-dev will get you the latest code upstreamed by the gccrs team into the main development branch of GCC, while the gccrs git repo will get you the absolute latest bleeding edge updates to gccrs. The GCC 14.0.1-dev configuration file is available within the official KallistiOS repo's dc-chain
script, while the latest gccrs configuration is available within the Rust for Dreamcast repository. Brief instructions follow for setting up the latest gccrs toolchain. See Getting Started with Dreamcast development for more detailed information on how to set up and run dc-chain
.
Building a gccrs-enabled toolchain
Follow the Getting Started with Dreamcast development guide for creating a Dreamcast toolchain until you arrive at the instructions for setting up the dc-chain
configuration file. At this point, you should have a shell open to /opt/toolchains/dc/kos/utils/dc-chain
.
Clone the Rust for Dreamcast repository:
git clone https://github.com/darcagn/rust-for-dreamcast.git rust
Copy the GCC patch in place:
cp rust/toolchain/gcc-rs-kos.diff patches/
Copy the dc-chain
configuration file into place:
cp rust/toolchain/config.mk.gccrs.sample config.mk
Make any desired changes to the configuration (e.g., change makejobs=-j2
to the number of CPU threads you'd like to use during compilation). Note that to avoid conflicting with an existing stable toolchain at the default path (i.e. /opt/toolchains/dc/sh-elf
), we will be installing to /opt/toolchains/dc/gccrs/sh-elf
instead. To begin compilation and installation, run:
make build-sh4
After building everything, you can clean up the extraneous files in your dc-chain
directory by entering:
make clean
Setting up Makefiles to compile Rust modules
As mentioned before, cargo
is not available to use with gccrs, so for our example, we will place our .rs
modules within a typical KallistiOS Makefile
project. If we assume the module file is named example.rs
, you'll need to add example.rox
as an object file in your Makefile
's OBJS =
declaration. Additionally, you'll need to add the following lines so that make
knows how to compile Rust modules into rox
object files:
%.rox: %.rs
kos-cc -frust-incomplete-and-experimental-compiler-do-not-use $(CFLAGS) -c $< -o $@
Alternatively, you can add those lines to your KallistiOS Makefile.rules
file to avoid having to place it in every project's Makefile
.
In your example.rs
file, your main
function will need to be declared like so:.
#[no_mangle]
pub extern fn main() -> i32 {
[...]
}
Make sure before you compile your code that you set export KOS_CC_BASE="/opt/toolchains/dc/gccrs/sh-elf"
in your KallistiOS environ.sh
file or make
will not find your gccrs compiler executable.