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SH-4 generic and C specific application binary interface

Introduction

The SH-4 application binary interface (ABI) defines a system interface for application 
programs on SH-4 systems using the ELF executable and linking file format. 

The language independent ABI defines the minimal conventions that must be used by all 
languages. The C specific ABI extends the language independent ABI to include the 
conventions required for the C language.

Adherence to this standard facilitates inter language calls, and the operation of language 
tools such as debuggers and operating systems.

Purpose
The purpose of this document is to describe the language independent application binary 
interface and the ANSI C language specific application binary interface for use on the SH-4 
architecture, using the ELF executable and linking file format. 
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1 Language independent ABI

1.1 Scope and aims
The language independent ABI is the minimal set of conventions to be observed by all 
languages. A particular language is free to enhance the basic ABI for its own purposes and 
the particular ABI’s for other languages should be consulted for further details. This chapter 
covers the following:

● memory organization, stack and global space,

● function frame layout,

● register usage conventions and call sequences.

1.2 Definition of terms
         

Function A function is intended to be a language neutral term for 
that part of a program that can be invoked from other 
parts of the program as often as needed. It covers C 
functions and C++ functions.

Leaf function A function that statically makes no further calls to other 
functions. 

Frame The stack space pushed for a function invocation.

Compilation unit The individual unit of a program which is presented to a 
compiler at a single time. In C, a unit is loosely the 
collection of functions in a single file.

External reference A reference from one compilation unit to an object 
defined outside the compilation unit.

Local reference A local reference is a reference to an object within the 
same unit.

Top of stack The lowest used address on the stack and usually 
corresponds to the most recent or current frame.

Bottom of stack The highest used address in the stack and usually 
corresponds to the oldest frame on the stack.

Stack unwind The process of decoding a function’s stack frame to 
recreate the machine state at the point of call of the 
function. This process is required to support certain 
language features, in particular exception handling as 
found in C++. 

Position independent code Position independent code (PIC) is code that can be 
loaded and will successfully execute anywhere in a 
program’s virtual address space, in other words, it is code 
that contains no absolute code or data addresses.
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1.3 ABI variations
This ABI specification recognizes a number of variations. These variations are explained in 
Section 1.3.1 to Section 1.3.3.

In general, code built for one variant is not compatible with code built for a different variant.

1.3.1 Byte ordering

Byte ordering defines how the bytes that make up an object are ordered in memory. Most 
significant byte (MSB) ordering or big-endian as it is often called, means that the most 
significant byte is located in the lowest addressed byte position in a storage unit. Least 
significant byte (LSB) ordering or little endian as it is often called, means that the least 
significant byte is located in the lowest addressed byte position in a storage unit. The SH-4 
architecture supports both big-endian and little-endian byte ordering.

This ABI specification also supports both big-endian byte ordering and little-endian byte 
ordering.

Big-endian code and little-endian code may not be mixed in the same program.

1.3.2 Use of floating-point unit

Code may be created either to use the floating-point unit, or to perform all floating-point 
operations in software. Code that uses the floating-point unit is said to use the fpu model, 
code that performs all floating-point operations in software is said to use the nofpu model.

The choice of floating-point model affects the way that function arguments and results are 
passed.

In general, fpu model code and nofpu model code cannot be mixed in the same program.

1.3.3 Pervading floating-point precision

Within the SH-4 architecture, certain floating-point instructions operate in either single or 
double precision, depending upon the value of the floating-point precision flag, PR. When 
one of these floating-point instructions is executed, the PR flag must contain the correct 
value for the actual precision needed. This may require additional code to set the PR flag to 
the appropriate value.

This ABI specification has the concept of pervading floating-point precision. This is the 
precision (single or double) that the PR flag must be set to before calling a function, and 
before returning from a function. If most of an application’s floating-point calculations are 
performed in the pervading precision, then less code is required to adjust the value of the 
PR flag.

Code may be created for either pervading single precision, or pervading double precision. 
Code with differing pervading precision may not be mixed in the same program.
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1.4 Stack layout
The stack of a single thread is a contiguous region of memory. Compilers allocate space on 
the stack to represent the local data of a function, usually referred to as a frame. Each called 
function creates and deletes its own frame. The stack grows as extra frames are allocated 
and in accordance with the architecture convention, the stack grows from high address to 
low address. The top of the stack (that is, the lowest address) is always referenced by a 
register known as the stack pointer, SP.

On SH-4, the stack pointer is always 4-byte aligned.

The stack pointer must address the top of stack at all times. The stack pointer contains the 
address of the last used byte on the stack. For instance, SP+0 is a valid address.

The topmost frame is the frame of the currently executing function. When a function is 
called, it allocates its own frame by decreasing SP; on exit, it deletes the frame by restoring 
SP to its original value. Each function is responsible for creating and deleting its own frame. 
Not all functions require a stack frame and a stack frame is allocated only if required. The 
stack growth is seen in Figure 1.

Figure 1. Overview of stack growth

As well as the stack pointer, a frame may also have a frame pointer, FP, a register used to 
address parts of the frame. Only a subset of frames need frame pointers.

On SH-4, if a stack frame uses a frame pointer, the frame pointer should be held in R14.

A register chosen to act as a frame pointer for a frame cannot be used for any other 
purpose, and must always be valid for the lifetime of that frame.

The ABI does not make any statements and does not assume anything about the state of 
the stack beyond the stack pointer (that is, any addresses < SP). The ABI is so written as to 
avoid any accesses beyond the current value of the stack pointer.
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1.5 Frame layout
The SH-4 frame layout is described in Figure 2.

Figure 2. SH-4 frame layout

The stack frame is partitioned into five distinct areas to facilitate stack unwinding and for 
function calling. 

● Register save area (D) is used to save and restore the callee save registers for this 
function, that is, the subset of local registers used by this function which are in the 
callee save set. 

● Local variable and temporary area (C) is an area for local variables which need 
memory locations and for any compiler temporaries, for example, register spills. Its size 
is known at compile time. The objects in this area are accessed by offsets from either 
the stack pointer or the frame pointer. 

● Dynamic variable area (B) is used for any objects which are allocated by extending 
the stack frame of the current procedure. For example, the alloca function in C. The 
size of this area is not known until run time but the existence of such an area is known 
at compile time. In practice, most frames will not have a dynamic area. The existence of 
a dynamic variable area means that the frame requires a frame pointer, since variables 
in the local variable area (C) are no longer at a fixed offset from the stack pointer. 
Space in the dynamic variable area is created by decreasing the stack pointer (which 
must be kept aligned). 
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● Argument area (A) is used to pass an argument list to functions called by the current 
function where the argument list is such that it cannot be accommodated in the 
parameter registers. The argument area contains the elements of the argument list that 
cannot be passed in registers because all the parameter registers of the appropriate 
type have been used. This area may be allocated as needed on each function call (by 
decreasing and increasing SP around the function call). Alternatively, if the frame has 
no dynamic variable area (B), then the argument area (A) can be created once on 
function entry by allocating the maximum area needed for all calls from this function. 
Allocating per function call requires code to manipulate SP at each function call, 
whereas allocating once on function entry means the stack frame will be larger 
throughout the lifetime of the function. The start (that is, the lowest address) of the 
argument area (A) must satisfy the alignment requirements for SP on entry to a 
function. If a function has both a dynamic variable area (B) and an argument area (A), 
the size of the dynamic variable area may not be altered while the argument area is in 
use. The argument area is only in use during the building of argument lists which 
means that dynamic memory allocations (and deallocations) must not happen during 
argument list building if the argument area (A) is also in use. In the local variable area 
(C) for example, any alloca processing may have to be hoisted out of the argument list 
generation. 

A leaf function may not require any space on the stack if all of its local variables and 
intermediate expressions can be allocated to scratch registers. If a leaf function requires no 
space on the stack, then it does not need to create a frame.

1.6 Global data
When position independent code (PIC) is not required, global data may be accessed using 
absolute addressing. See Chapter 4: Coding examples on page 28 for examples.

When position independent code is required, global data should be accessed using a global 
offset table. See Chapter 3: Position-independent code on page 20 for details.

1.7 Function linkage and parameter passing

1.7.1 Function linkage

The linkage register is used in function calling to record the return address for any function 
call.

On SH-4, the PR register is used as the linkage register.

1.7.2 Parameter passing

The term ‘parameter passing convention’ refers to how the actual machine resources (for 
example, registers, memory) are used to pass the parameters from the caller to the callee. 

Parameters are passed in registers or memory.

On SH-4, registers R4 to R7, FR4 to FR11 and the stack argument area (A) are used for 
parameter passing.

The mapping from an argument list to machine resources is dependent on the type 
associated with the elements of the list and is therefore language dependent. Chapter 2: 
ANSI C ABI on page 12 describes the details of these two mappings for ANSI C.
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1.7.3 Register usage conventions

Several terms are defined for use in the specification of the register usage conventions.

● A register is CALLER SAVE if its value is not guaranteed to be preserved across 
function calls. Such a register is also termed SCRATCH since the caller will have to 
save and restore the register around function calls.

● A register is CALLEE SAVE if its value is guaranteed to be preserved across calls. The 
implication is that the callee will either not modify the register or else save it to memory.

● A register is RESERVED if it has some special use required either by a software 
convention or by the hardware. 

The register usage for SH-4 is given in Table 1.

         

Table 1. SH-4 ABI register usage

Register name Usage

R0 to R3 Return value, caller save

R2 Large struct return address, caller save

R4 to R7 Parameter passing, caller save

R8 to R13 Callee save

R12 Global context pointer, GP, callee save

R13 Callee save

R14 Frame pointer, FP, callee save

R15 Stack pointer, SP, callee save

FR0 to FR3 Return value, caller save

FR4 to FR11 Parameter passing, caller save

FR12 to FR15 Callee save

MACH Caller save

MACL Caller save

PR Linkage register, caller save

FPSCR
PR bit must be pervading precision on entry to prolog and exit from 
epilog
FR and SZ bits must be zero on entry to prolog and exit from epilog(1)

1. The SZ and FR bits in the floating-point status register must be zero upon entry to prolog and exit from 
epilog of any function. The PR bit must be set to the correct value for the pervading precision upon entry to 
prolog and exit from epilog of any function: 0 for single-precision, 1 for double-precision. See Section 1.3.3: 
Pervading floating-point precision on page 5.

FPUL Caller save

SR Status register: S, M, Q and T bits are caller save(2)

2. The M, Q, S and T bits in the status register have undefined values on entry to a function, and their values 
are not guaranteed to be preserved across calls.

GBR Reserved
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1.8 DWARF register assignments
The DWARF information generated by GCC references SH-4 registers as numbers. Table 2 
gives the allocation of register numbers (as provided by GCC 4.2.1).

         

1.9 Function prolog and epilog
The generic ABI does not specify an exact code sequence that must be performed on entry 
(the prolog) or on exit (the epilog) of a function. Instead, function prologs and epilogs are 
characterized by a set of tasks which are carried out.

On entry to a function, several optional tasks can be performed.

● Create a stack frame. This is performed by decreasing SP. No accesses beyond SP are 
permitted. The decrement of SP may be performed by a single instruction, or by a 
number of instructions.

● Create a working register set. A function always has access to a set of scratch (caller-
save) registers. If it needs further registers, it must save and use callee-save registers.

● Save the return address.

● Establish a frame pointer if needed, by copying SP to the frame pointer register.

● Establish a global context pointer, GP, if needed, as an offset from the PC.

Table 2. DWARF register assignments

Register name Number Notes

R0 to R15 0 to 15

PC 16 Linux only

PR 17

GBR 18 Previously 19

VBR 19 Not generated by GCC, but used by GDB

MACH 20

MACL 21

SR 22 Linux only

SR.T 22 Previously 18

FPUL 23

FPSCR 24

FR0 to FR15 25 to 40

SSR 41 Not generated by GCC, but used by GDB

SPC 42 Not generated by GCC, but used by GDB

DBR 59 Not generated by GCC, but used by GDB

SGR 60 Not generated by GCC, but used by GDB

XF0 to XF15 61 to 76 Not generated by GCC, but used by GDB

XD0 to XD7 87 to 94
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On exit from a function, four tasks are performed.

● Restore the callee save registers that were saved in the prolog code.

● Restore the return address.

● Delete the stack frame by restoring SP. Again, the increment of SP may be performed 
by a number of instructions but after each of these increments, SP must be correctly 
aligned.

● Perform a return to the caller using the return address.
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2 ANSI C ABI

This section covers the run-time model for the implementation of ANSI C based on the 
language independent ABI.

2.1 Type mapping
Signed integers use a two’s complement representation. Single-precision and double-
precision floating-point numbers use the IEEE754 single-precision and double-precision 
formats.

2.1.1 SH-4 ABI fundamental type mapping

The type mapping for the SH-4 ABI is given in Table 3.

         

Table 3. SH-4 ABI mapping of ANSI C data types

ANSI C type
SH-4 ABI representation

Type Size (bytes) Alignment (bytes)

char

signed char

unsigned char

signed integer
signed integer
unsigned integer

1 1

short int (signed)

unsigned short int

signed integer
unsigned integer

2 2

int (signed)

unsigned int

enum

signed integer
unsigned integer

signed integer

4 4

long int (signed)

unsigned long int

signed integer

unsigned integer
4 4

long long int (signed)

unsigned long long int 

signed integer

unsigned integer
8 4

float
single-precision 
floating-point

4 4

double 

long double

double-precision 
floating-point

8 4

_Complex float
single-precision 
floating-point pair, 
real part first

8 4

_Complex double
double-precision 
floating-point pair, 
real part first

16 4

pointer unsigned integer 4 4
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2.1.2 Null pointer

A null pointer (for all types) has the value zero.

2.1.3 Function pointers

On SH-4, a function pointer contains the address to call to enter the function.

2.1.4 Aggregate types

Arrays of types inherit the alignment of the elements of the array. Each element of an array 
is correctly aligned, that is an array will have the alignment of its elements. The size of an 
array is always a multiple of the element alignment and an array does not cause any extra 
(internal or tail) padding to be added.

Structures and unions have the alignment of their most strictly aligned member. Each 
member is assigned to the lowest available offset with the appropriate alignment. This may 
require internal padding. The contents of any padding is undefined. The size of a structure is 
always a multiple of its alignment and this may require tail padding.

This padding allows the following familiar C idiom to be used to allocate arrays of structures:

struct T {...} *ptr;
ptr = (struct T *)malloc (n * sizeof(struct T));

The address of a structure or union is its lowest (smallest) address. Structure fields are 
allocated in declarative order from lowest address to highest address. Fields of the structure 
or union are addressed with positive offsets from the base of the structure. The qualifier 
volatile applied to an aggregate type has no effect on its layout. The volatile qualifier 
applied to a structure or union field will also not affect the layout of the record.

Bit-fields

Bit-fields are associated with an underlying integral type (char, short, int, long or long long). 
The associated type is the type used in the bit-field definition.

Bit-fields may be of any integral type (char, short, int, long, long long, enum) and can be of 
any size from 0 to the maximum width of the underlying type. For example, a char bit-field 
can be up to 8 bits wide whereas a long long bit-field has a maximum of 64 bits.

On SH-4, bit-fields obey the same size and alignment rules as other structure members, 
with several additions.

● A bit-field is allocated within a storage unit whose alignment and size are the same as 
the alignment and size of the underlying type of the bit-field. The bit-field must reside 
entirely within this storage unit: a bit-field never straddles the natural boundary of the 
underlying type.

● In the little-endian ABI, bit-fields are allocated from right to left (least to most significant) 
within a storage unit. In the big-endian ABI, bit-fields are allocated from left to right 
(most to least significant) within a storage unit.

● A bit-field shares a storage unit with the previous structure member if there is sufficient 
space within the storage unit.

● Plain bit-fields are treated as signed.
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● The effect of a zero-length bit-field is to:

– pad up to the alignment of the underlying type of the zero-length bit-field, and

– force the next (non-zero-length) field to be allocated in a new storage unit.

● Unnamed bit-fields (including zero-length unnamed bit-fields) do not affect the overall 
alignment of a struct.

Table 4 shows some examples of bit-field layout. Big-endian byte numbers are shown in the 
upper left corners, little-endian byte numbers in the upper right corners, and bit numbers in 
the lower corners.

         

Table 4. SH-4 bit-field examples

struct {
int a:5;
int b:6;
int c:7;

};

SH-4 little-endian layout, 4-byte aligned, sizeof is 4

SH-4 big-endian layout, 4-byte aligned, sizeof is 4

struct {
short a:11;
int b:9;
char c;
short d:11;
short e:10;
char f;

}; SH-4 little-endian layout, 4-byte aligned, sizeof is 12

SH-4 big-endian layout, 4-byte aligned, sizeof is 12

struct {
char a;
short b:8;

}; SH-4 little-endian layout, 2-byte aligned, sizeof is 2

SH-4 big-endian layout, 2-byte aligned, sizeof is 2
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0
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a b c pad
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fpad
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a b c
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pad e pad

f pad

0

4

8
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31 24 23 0

0

07815
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0

15 8 7 0
a b
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2.2 Function results and argument passing

2.2.1 SH-4 function results

Table 5 lists how function values are returned on SH-4 for the C fundamental types.

         

struct {
char a;
int :0;
char b;
short :11;
char c;
char :0;

}; SH-4 little-endian layout, 1-byte aligned, sizeof is 9

SH-4 big-endian layout, 1-byte aligned, sizeof is 9

Table 4. SH-4 bit-field examples (continued)

0

4

8

07831

0781516262731

07

a:0

bpad:11pad

c

0

4
031 24 23

31 24 23 1615 5 4 0

2431

a :0

b pad :11 pad

c

Table 5. SH-4 ABI return location for fundamental types

Result type Returned in

unsigned char R0. Zero extended (that is, bits 8 to 31 are zero).

char

signed char
R0. Sign extended (that is, bit 7 is duplicated through bits 8 to 31).

unsigned short int R0. Zero extended (that is, bits 16 to 31 are zero).

short int (signed) R0. Sign extended (that is, bit 15 is duplicated through bits 16 to 31).

unsigned int

int (signed)

unsigned long

long (signed)

R0.

enum R0.

unsigned long long

signed long long

Little-endian model: R0 (least significant), R1 (most significant).

Big-endian model: R0 (most significant), R1 (least significant).

float
Fpu model: FR0.

Nofpu model: R0.
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Aggregate types not bigger than 8 bytes that have the same size and alignment as one of 
the integer scalar types are returned in the same registers as the integer type they match. 
For example, a 2-byte aligned structure with a size of 2 bytes has the same size and 
alignment as a short int, and is returned in R0. A 4-byte aligned structure with size 
8 bytes has the same size and alignment as a long long int, and is returned in R0 and 
R1. When an aggregate type is returned in R0 and R1, R0 contains the first four bytes of the 
aggregate, and R1 contains the remainder. If the size of the aggregate type is not a multiple 
of 4 bytes, the aggregate is tail-padded up to a multiple of 4 bytes. The value of the padding 
is undefined. For little-endian targets the padding appears at the most significant end of the 
last register used. For big-endian targets the padding appears at the least significant end of 
the last register used.

Note: Aggregates that are 8 bytes or smaller are only returned in registers if they have the same 
size and alignment as an integer scalar type. This is sometimes referred to as the GCC 
struct return rule.

For example, given:

struct s { char c[3]; } str; 
struct s foo(void) { return str; } 

the return value from foo() will be in memory, not in R0, because there is no 3-byte integer 
type. 

All other aggregate types are returned by address. The caller function passes the address of 
an area large enough to hold the aggregate value in R2. The called function stores the result 
in this location.

double

long double

Fpu model: DR0.
Nofpu, little-endian model: R0 (least significant), R1 (most significant).

Nofpu, big-endian model: R0 (most significant), R1 (least significant).

_Complex float
Fpu model: FR0 (real part), FR1 (imaginary part).

Nofpu model: R0 (real part), R1 (imaginary part).

_Complex double

Fpu model: DR0 (real part), DR2 (imaginary part).

Nofpu, little-endian model: R0 (real part, least significant), R1 (real part, 
most significant), R2 (imaginary part, least significant), R3 (imaginary 
part, most significant).
Nofpu, big-endian model: R0 (real part, most significant), R1 (real part, 
least significant), R2 (imaginary part, most significant), R3 (imaginary 
part, least significant).

pointer R0.

void Nowhere.

Table 5. SH-4 ABI return location for fundamental types (continued)

Result type Returned in
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2.2.2 SH-4 argument passing

Actual parameters are processed in lexical order and are mapped to registers or memory as 
described in this section. The lexical order is either the order the parameters appear in the 
function prototype or the order of the actual arguments in the absence of a prototype.

The type conversions listed below are performed as dictated by the ISO C standard.

● When a prototype is specified, the actual arguments are converted to the 
corresponding formal parameter type. In the ellipsis part of a function that takes a 
variable number of arguments, char, short, unsigned char, unsigned short are 
converted to type int and float is converted to type double.

● When a prototype is not specified, char, short, unsigned char, unsigned short 
are converted to type int and float is converted to type double.

Each scalar actual parameter is mapped to one or more registers or stack longwords, as 
described in Table 6. Parameters passed on the stack are passed in the argument area (A) 
at the next available longword (32-bit), starting from the lowest address in the argument 
area.

         

Table 6. SH-4 parameter passing location for fundamental types

Actual parameter type Passed in

unsigned char

char

signed char

unsigned short

short (signed)

unsigned int

int

enum

unsigned long

long

pointer

Next available register from R4, R5, R6, R7 or, if none of these registers are 
available, next longword on the stack.

For parameters narrower than 4 bytes, the upper bits are undefined.

unsigned long long

signed long long

Next two available registers from R4, R5, R6, R7 or, if there are not two registers 
available, next two longwords on the stack. The parameter is passed either entirely 
in registers or entirely on the stack.

In the little-endian model, the least significant half of the value is passed in the lower 
numbered register or lower addressed stack slot.

In the big-endian model, the most significant half of the value is passed in the lower 
numbered register or lower addressed stack slot.

float

In the fpu, little-endian model: the next available register from the list FR5, FR4, FR7, 
FR6, FR9, FR8, FR11, FR10. (This allocation ordering is necessary to get the 
correct behavior for varargs functions.)

In the fpu, big-endian model: the next available register from the list FR4, FR5, FR6, 
FR7, FR8, FR9, FR10, FR11.

In the nofpu model: the next available register from the list R4, R5, R6, R7.
Otherwise for all models, if no register is available from the list, the parameter is 
passed in the next longword on the stack.
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double

In the fpu model: the next available register from the list DR4, DR6, DR8, DR10.
If this requires skipping a single-precision floating-point register, then that single-
precision register is marked as unavailable. It cannot be allocated to a later 
parameter. For example, to assign a double-precision floating-point element where 
FR4 has already been allocated a single-precision element, but FR5-FR11 are still 
available. The double-precision element cannot be assigned to DR4 because FR4 is 
allocated, so it is assigned to DR6. Now FR5 becomes unavailable. If the next 
floating-point element to be assigned is single-precision, it will be assigned to FR8, 
leaving FR5 unused.
Otherwise, if no double-precision floating-point parameter register is available, the 
parameter is passed in next two longwords on the stack. The parameter is always 
passed entirely in registers or entirely on the stack.
In the little-endian model, the least significant half of the value is passed in the lower 
addressed stack slot.
In the big-endian model, the most significant half of the value is passed in the lower 
addressed stack slot.

In the nofpu model: the next two available registers from R4, R5, R6, R7 or, if there 
are not two registers available, next two longwords on the stack. The parameter is 
always passed entirely in registers or entirely on the stack.
In the little-endian model, the least significant half of the value is passed in the lower 
numbered register or lower addressed stack slot.
In the big-endian model, the most significant half of the value is passed in the lower 
numbered register or lower addressed stack slot.

_Complex float

In the fpu model: the next two available registers from the list FR4, FR5, FR6, FR7, 
FR8, FR9, FR10, FR11.
In the nofpu model: the next two available registers from the list R4, R5, R6, R7.

For both models, if there are not two registers available from the list, the parameter is 
passed in the next two longwords on the stack. The parameter is always passed 
entirely in registers or entirely on the stack.
The real part of the value is passed in the lower numbered register or lower 
addressed stack slot.
The imaginary part of the value is passed in the higher numbered register or higher 
addressed stack slot.

_Complex double

In the fpu model: the next two available registers from the list DR4, DR6, DR8, 
DR10. If this requires skipping a single-precision floating-point register, then that 
register is marked as unavailable: it cannot be allocated to a later parameter.
In the nofpu model: in the four registers R4, R5, R6, R7 if available.

For both models, if the registers are not available, the value is passed in the next four 
longwords on the stack. The parameter is always passed entirely in registers or 
entirely on the stack.
The real part of the value is passed first. This means that the real part will appear in 
lower numbered registers or lower addressed stack slots than the imaginary part.
In the little-endian model, the least significant half of the real and imaginary parts is 
passed in the lower numbered register or lower addressed stack slot.
In the big-endian model, the most significant half of the real and imaginary parts is 
passed in the lower numbered register or lower addressed stack slot.

Table 6. SH-4 parameter passing location for fundamental types (continued)

Actual parameter type Passed in
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The mapping of an aggregate parameter is determined by the memory layout of that 
parameter. The parameter is broken into a series of 4-byte elements. If there are enough 
registers available from the list R4, R5, R6, R7 to contain all of the 4-byte elements of the 
parameter, the 4-byte elements are assigned to the available registers in order. Otherwise, if 
there are not enough registers available, all of the 4-byte elements are assigned to 
successive longwords on the stack.

When the size of an aggregate parameter is not a multiple of 4 bytes, it is tail padded up to a 
multiple of 4 bytes. The value of this padding is undefined. For little-endian targets the 
padding appears at the most significant end of the last element, for big-endian targets the 
padding appears at the least significant end of the last element.

Example

typedef struct s_point {
 float x, y;

} point;
int foo(point p1, float f1, double d1, float f2, point p2, point p3, 
float f3, double d2);
foo(p1,f1,d1,f2,p2,p3,f3,d2); 

Figure 3. SH-4 argument passing example

2.3 Symbol names
It is a property of the target environment whether C identifiers are prepended with an 
underscore when they are used as global symbol names in the resulting object file.

On a “bare machine” target environment (an environment where there is no operating 
system), C identifiers used as global symbol names in the resulting object file are 
prepended with an underscore. For example, the entry point of the function foo() is 
represented by the symbol _foo in the object file.

In the Linux environment, C identifiers are traditionally not prepended with an underscore. 
For example, the entry point of the function foo() will be represented by the symbol foo in 
the object file.
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R5

R4

DR6

DR10
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FR4

FR5

FR8

FR9

p1.x

p1.y
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p2.y
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f2

f3

d2

p3.x

p3.y
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3 Position-independent code

This section describes how position-independent code is implemented in Unix-like 
environments, in particular Linux. However, the method of supporting position-independent 
code may be different in other target environments.

Position-independent code is useful in order to support dynamically loaded objects, as it 
allows the objects to be loaded at different virtual addresses without having to change the 
program text image. Multiple processes can share a single position-independent text 
segment, even though the segment resides at a different virtual address in each process.

3.1 The global offset table
For code to be position-independent, it must contain no absolute addresses. Instead, all 
absolute addresses are collected into a table, called the global offset table. When the code 
requires an absolute address, it loads the appropriate entry from the global offset table. 
Code that references the global offset table uses PC-relative addressing, and is therefore 
position-independent. Chapter 4: Coding examples on page 28 gives example code 
sequences for position-independent addressing of functions and data using the global offset 
table.

Each shared object has a separate global offset table. When control is transferred from a 
function in one shared object to a function in another shared object, the global offset table 
used will also change.

The global offset tables reside in the data segment of a process. Processes do not share 
data segments, therefore each process has its own global offset tables. A process has one 
global offset table for each shared object it references.

When the memory image of a process is created, the contents of its global offset tables are 
relocated by the dynamic linker, to reflect the absolute addresses assigned to that process.

For efficiency, if a function needs to access the global offset table, then it calculates a 
pointer to the global offset table in the prolog, and saves this in the GP register (R12). This 
value may be the base address of the global offset table, or it may be biased from the base 
of the global offset table. As R12 is a callee-save register, it must be saved before this 
calculation, and the original value restored in the function epilog.
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3.2 The procedure linkage table
The procedure linkage table (PLT) addresses two problems.

1. Shared objects can often contain calls to a very large number of global functions, many 
of which are never executed. The global offset table contains an entry for each of these 
functions. At the time a process is created, the dynamic linker needs to resolve all of 
these entries in the global offset table, even though many of them are never needed. 
This can be time-consuming. An alternative is to have the entry in the global offset 
table point to a piece of stub code that resolves the symbol reference at run-time, if and 
only if the function is called. This is called lazy symbol resolution.

2. In order to call a global function, it is necessary to load the address of the function from 
the global offset table, and perform an indirect call. This can require several 
instructions. An alternative is to perform a PC-relative call to a piece of stub code which 
loads the entry from the global offset table and performs the indirect call. This can 
improve code density on many architectures, though it requires more instructions to be 
executed.

The procedure linkage table collects together these stubs. It contains an entry for each 
global function that may be called. Each entry contains two pieces of code: the first piece 
loads the function address from the global offset table and calls it (that is, the stub required 
for problem 2), the second piece calls a runtime fix up function that resolves the true 
address of the function (that is, the stub required for problem 1).

Figure 4 illustrates the code in an SH-4 PLT entry. This is just an example of how a PLT 
could be implemented, there is no requirement that this exact code sequence is used.

Figure 4. SH-4 position-independent PLT entry

The code beginning at label PLTn loads the value of the function’s entry in the global offset 
table and calls it.

PLTn: MOV.L .L1,R0
MOV.L @(R0,R12),R0
JMP @R0
NOP

.L0: MOV.L @(8,R12),R0
MOV.L .L2,R1
JMP @R0
MOV.L @(4,R12),R0
NOP
NOP

.L1: .long n@GOT

.L2: .long reloc. offset
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The code beginning at label .L0 loads R0 with the value of the second global offset table 
entry @(4,R12), and R1 with the relocation offset of the function, and then calls the 
address in the third global offset table entry @(8,R12). The second and third entries in the 
global offset table have special values: the second entry is a pointer to a link_map data 
structure, that provides link data specific to the shared object, and the third entry is the 
address of a run-time fix up function, _dl_runtime_resolve. The relocation offset is the 
offset into the dynamic relocation table of the relocation that will fix-up the global offset table 
entry for the function. So the overall effect of this code is to perform the function call

_dl_runtime_resolve(&link_map, reloc_offset);

but note that the function arguments are not passed in the normal argument passing 
registers.

The sequence of events involved in lazy run-time symbol resolution are described below.

1. When the memory image of the process is created, entry 2 of the global offset table is 
initialized to be the address of the link_map data structure, and entry 3 of the global 
offset table is initialized to be the address of _dl_runtime_resolve, a function that 
performs run-time symbol resolution.

Additionally, for every function whose address is to be resolved lazily, the global offset 
table entry for that function is initialized to be the address of the second part of the 
procedure linkage table entry for that function, that is .L0 in the above example PLT 
entry.

2. The program requires to call the function n. This is performed by loading the arguments 
to n and making a PC-relative call to label PLTn. The calling function must ensure that 
R12 has been initialized to the address of the global offset table before making this call.

3. The code at PLTn loads the global offset table entry for n and calls it. As this global 
offset table entry has been initialized to label .L0, control is passed to this label.

4. The code at .L0 calls _dl_runtime_resolve, passing link_map and 
reloc_offset as arguments. Note these arguments are passed in scratch registers 
rather than the normal argument passing registers, because the arguments to n are in 
the normal argument passing registers, and must not be overwritten.

5. _dl_runtime_resolve applies the relocation specified by reloc_offset. That is, 
it finds the value of symbol n, and stores the true address of n in the global offset table 
entry for n. It then transfers control to n.

6. Subsequent calls to n will avoid the runtime resolution overhead. As the global offset 
table entry for n has been overwritten with the true address of n, step 3 will transfer 
control directly to n.

Some variations on this sequence are possible. For example, the program may call n by 
loading the global offset table entry for n and calling it, rather than by calling PLTn at step 2. 
The first time n is called, this results in step 3 being skipped and control is passed directly to 
.L0. On subsequent calls, this passes control directly to n.
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3.2.1 Absolute procedure linkage table

An executable is often compiled as absolute code even though it uses position-independent 
shared libraries. The executable contains absolute calls to functions in the shared libraries, 
but the absolute addresses of these functions cannot be determined at the time of static 
linking. Instead, the absolute calls are relocated so that they call an “absolute” procedure 
linkage table entry. Absolute procedure linkage tables are part of the executable and have a 
known absolute address. They perform the same actions as position-independent 
procedure linkage tables, but they do not have a global context pointer available and so 
must use PC-relative or absolute addressing.

Figure 5 illustrates the code in an SH-4 absolute PLT entry. It is an example of how a PLT 
could be implemented, there is no requirement that this exact code sequence is used. 

Figure 5. SH-4 absolute PLT entry

PLT0 is a special entry that does not correspond to any external function. It contains 
common code used by all the other PLT entries. PLTn is the PLT entry used to call the 
external function n.

The code beginning at label PLTn loads R1 with the address of PLT entry 0, then jumps to 
the address contained in the function’s entry in the global offset table. R1 is copied into R0 
in the delay slot of the jump.

The code beginning at label .L0 loads R1 with the relocation offset of the function and then 
branches to the address in R0. This code is reached only reached after executing the code 
at PLTn, which has placed the address PLT0 in R0. So the branch always transfers control 
to PLT0.

PLT0: MOV.L .L02,R0
MOV.L @R0,R0
MOV.L R0,@-R15
MOV.L .L01,R0
MOV.L @R0,R0
JMP @R0
MOV.L @R15+,R0
NOP
NOP
NOP

.L01: .long address of GOT entry 2

.L02: .long address of GOT entry 1

...
PLTn: MOV.L .L2,R0

MOV.L @R0,R0
MOV.L .L1,R1
JMP @R0
MOV R1,R0

.L0:  MOV.L .L3,R1
JMP @R0
NOP

.L1: .long PLT0

.L2: .long address of GOT entry for n

.L3: .long reloc. offset
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The code beginning at PLT0 loads R0 with the value of the second global offset table entry, 
and then branches to the address in the third global offset table entry. R1 still contains the 
relocation offset of the function. Just as for the position-independent code, the second and 
third entries in the global offset table contain pointers to link_map and 
_dl_runtime_resolve. So the overall effect of this code is to call

_dl_runtime_resolve(&link_map, reloc_offset);

but again the function arguments are passed in R0 and R1, rather than the normal argument 
passing registers.

The sequence of events involved in lazy run-time symbol resolution when an absolute PLT 
entry is used is very similar to that for a position-independent PLT entry.

1. When the memory image of the process is created, entry 2 of the global offset table is 
initialized to be the address of the link_map data structure, and entry 3 of the global 
offset table is initialized to be the address of _dl_runtime_resolve, a function that 
performs run-time symbol resolution.

Additionally, for every function whose address is to be resolved lazily, the global offset 
table entry for that function is initialized to be the address of the second part of the 
procedure linkage table entry for that function, that is .L0 in the above example PLT 
entry.

2. The program requires to call the function n. This is performed by loading the arguments 
to n and making an absolute call to label PLTn. R12 does not contain a global context 
pointer (executables containing absolute code do not maintain a global context pointer 
in R12).

3. The code at PLTn loads the global offset table entry for n and branches to it. As this 
global offset table entry has been initialized to label .L0, control is passed to this label. 

4. The code at .L0 loads reloc_offset and then branches to the code at PLT0. The 
code at PLT0 calls _dl_runtime_resolve, passing link_map and reloc_offset 
as arguments. Note these arguments are passed in scratch registers rather than the 
normal argument passing registers, because the arguments to n are in the normal 
argument passing registers, and must not be overwritten.

5. _dl_runtime_resolve applies the relocation specified by reloc_offset. That is, 
it finds the value of symbol n, and stores the true address of n in the global offset table 
entry for n. It then transfers control to n.

6. Subsequent calls to n will avoid the runtime resolution overhead. As the global offset 
table entry for n has been overwritten with the true address of n, step 3 will transfer 
control directly to n.



SH-4 Generic and C Specific ABI Position-independent code

7839242 Rev 2 25/38

3.3 Relocations involved in dynamic linking
Some relocation types have special semantics to support dynamic linking. Table 7 lists the 
relocations and the value they calculate. 

The calculation uses the following values:

The values used for field are:

         

A The relocation’s addend.

B The base address at which a shared object has been loaded into 
memory. Normally, a shared object is build with a 0 base address, 
but the object’s load address will be non-zero.

G The offset from the global context pointer to the global offset table 
entry for the symbol. The global context pointer may be the address 
of the first entry in the global offset table, or it may be biased from 
this address.

GOT The value of the global context pointer. The global context pointer 
may be the address of the first entry in the global offset table, or it 
may be biased from this address.

L The address of the procedure linkage table entry for the symbol.

P The address of the storage unit being relocated.

S The base address at which the shared object has been loaded into 
memory, plus the value of the relocation’s symbol.

word32 A 32-bit longword.

word64 A 64-bit quadword.

T_wwsaaforll An ll-bit wide field starting at the aa’th bit in a storage unit of width 
ww. s indicates the signedness: s means signed, u means unsigned. 
The value stored in the field is truncated to ll bits before storing. For 
example, T_32s10for16 means a signed field in bits 10 through 25 of 
a 32-bit longword: this matches the constant operand in an SHmedia 
movi instruction.

V_wwsaaforll As for T_wwsaaforll except that the value is verified to fit in the field 
before storage. If the value cannot fit an error should be reported. 

Table 7. Relocations for position independent code

Name Value Field Calculation

R_SH_GOT32 160 word32 G + A

R_SH_GOT_LOW16 169 T_32s10for16 (G + A) & 65535

R_SH_GOT_MEDLOW16 170 T_32u10for16 ((G + A) >> 16) & 65535

R_SH_GOT_MEDHI16 171 T_32u10for16 ((G + A) >> 32) & 65535

R_SH_GOT_HI16 172 T_32u10for16 ((G + A) >> 48) & 65535

R_SH_GOT10BY4 189 V_32s10for10 (G + A) / 4

R_SH_GOT10BY8 191 V_32s10for10 (G + A) / 8

R_SH_PLT32 161 word32 L + A - P
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Relocations that use GOT in their calculation cause the link editor to create a global offset 
table. Relocations that use G in their calculation cause the link editor to create a global 
offset table and add the referenced entry to it (if not already present). Relocations that use L 
in their calculation cause the link editor to create a procedure linkage table and a global 
offset table, and add the referenced entry to both, if not already present.

The link editor creates dynamic relocations to initialize each entry in the global offset table. If 
the entry is referenced by at least one R_SH_GOTxxx type relocation, then it will be 
initialized to the absolute address of the symbol. If the entry is only referenced by 
R_SH_PLTxxx or R_SH_GOTPLTxxx type relocations, then it will be initialized to the second 
part of the PLT entry for the symbol.

Although they calculate the same value, R_SH_GOTxxx and R_SH_GOTPLTxxx cause a 
different initial value to be placed in the global offset table entry. R_SH_GOTPLTxxx allows 
the global offset table entry to initially point to the PLT entry, allowing lazy run-time 
relocation of the symbol. Whereas R_SH_GOTxxx requires the global offset table entry to 
be initialized to the absolute address of the symbol, preventing lazy run-time relocation.

Table 8 lists the dynamic relocations created by the link editor and resolved by the dynamic 
linker, and the values calculated.

R_SH_PLT_LOW16 177 T_32s10for16 (L + A - P) & 65535

R_SH_PLT_MEWLOW16 178 T_32u10for16 ((L + A - P) >> 16) & 65535

R_SH_PLT_MEDHI16 179 T_32u10for16 ((L + A - P) >> 32) & 65535

R_SH_PLT_HI16 180 T_32u10for16 ((L + A - P) >> 48) & 65535

R_SH_GOTPLT32 168 word32 G + A

R_SH_GOTPLT_LOW16 169 T_32s10for16 (G + A) & 65535

R_SH_GOTPLT_MEDLOW16 170 T_32u10for16 ((G + A) >> 16) & 65535

R_SH_GOTPLT_MEDHI16 171 T_32u10for16 ((G + A) >> 32) & 65535

R_SH_GOTPLT_HI16 172 T_32u10for16 ((G + A) >> 48) & 65535

R_SH_GOTPLT10BY4 189 V_32s10for10 (G + A) / 4

R_SH_GOTPLT10BY8 191 V_32s10for10 (G + A) / 8

R_SH_GOTOFF 166 word32 S + A - GOT

R_SH_GOTOFF_LOW16 181 T_32s10for16 (S + A - GOT) & 65535

R_SH_GOTOFF_MEWLOW16 182 T_32u10for16 ((S + A - GOT) >> 16) & 65535

R_SH_GOTOFF_MEDHI16 183 T_32u10for16 ((S + A - GOT) >> 32) & 65535

R_SH_GOTOFF_HI16 184 T_32u10for16 ((S + A - GOT) >> 48) & 65535

R_SH_GOTPC 167 word32 GOT + A - P

R_SH_GOTPC_LOW16 185 T_32s10for16 (GOT + A - P) & 65535

R_SH_GOTPC_MEDLOW16 186 T_32u10for16 ((GOT + A - P) >> 16) & 65535

R_SH_GOTPC_MEDHI16 187 T_32u10for16 ((GOT + A - P) >> 32) & 65535

R_SH_GOTPC_HI16 188 T_32u10for16 ((GOT + A - P) >> 48) & 65535

Table 7. Relocations for position independent code (continued)

Name Value Field Calculation
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In addition, the relocations listed in Table 9 can appear as ordinary relocations in the input to 
the static linker, and be copied to the output as dynamic relocations that require resolution 
by the dynamic linker. R_SH_DIR32 and R_SH_64 should never appear as relocations on 
position-independent code, but they can appear as dynamic relocations on data.

         

Table 8. Dynamic relocations for dynamic linking

Name Value Field Calculation

R_SH_COPY 162 none none

R_SH_COPY64 193 none none

R_SH_GLOB_DAT 163 word32 S

R_SH_GLOB_DAT64 194 word64 S

R_SH_JMP_SLOT 164 word32 S

R_SH_JMP_SLOT64 195 word64 S

R_SH_RELATIVE 165 word32 B + A

R_SH_RELATIVE64 196 word64 B + A

Table 9. Additional dynamic relocations for dynamic linking

Name Value Field Calculation

R_SH_DIR32 1 word32 S + A

R_SH_REL32 2 word32 S + A - P

R_SH_64 254 word64 S + A

R_SH_64_PCREL 255 word64 S + A - P
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4 Coding examples

This section provides example coding sequences for various operations such as accessing 
static data, and calling functions. This section gives descriptions of how these operations 
could be performed, it does not require that they are performed in this way.

This section discusses both absolute and position-independent coding models.

In the absolute model, absolute addresses of code and data objects can be embedded in 
the program code, either as instruction operands or in tables in the text section. The 
program must be loaded at a specific address, to ensure that the absolute addresses 
contained in the program code are correct.

In the position-independent model, the program code may use relative addresses only. 
This means the address at which the program code and data may be loaded need not be 
specified until load time.

In general, it is possible to combine position-independent code with absolute code. The 
resulting combination is absolute code.

4.1 Position-independent code model
All absolute (virtual) addresses are held in a table called the global offset table. This table is 
contained in the data segment of a process. Each process has a private data segment, 
therefore each process has its own unique global offset table. The global context pointer, 
GP (R12), is used to point to the global offset table. 

Note: R12 is a callee save register, and may be used for other purposes when access to the global 
offset table is not required.

To improve the efficiency of function calling, a procedure linkage table is also used. This 
table is contained in the text segment of a process. If an executable or shared object has 
position-independent code, then its procedure linkage table is also position independent, 
and can be shared by multiple processes. The procedure linkage table is normally accessed 
relative to the program counter (PC).

The following notation is used in position independent code examples.

name@GOT This evaluates to the offset from the global context pointer 
to the entry for name in the global offset table.

This causes a global offset table to be created.

An entry for name in the global offset table is created if one 
does not already exist. At program load time, the entry for 
name in the global offset table is initialized to the absolute 
address of name.

name@GOTPLT This evaluates to the offset from the global context pointer 
to the entry for name in the global offset table.

This causes a global offset table, and a procedure linkage 
table to be created.



SH-4 Generic and C Specific ABI Coding examples

7839242 Rev 2 29/38

An entry for name in the global offset table is created if one 
does not already exist. At program load time, the entry for 
name in the global offset table will not necessarily contain 
the absolute address of name, it may instead contain the 
address of a fix up function that resolves the absolute 
address of name, updates the global offset table entry, and 
then passes control to name.

An entry for name in the procedure linkage table is created 
if one does not already exist.

name@GOTOFF This evaluates to the offset from the global context pointer 
to name. (Note that this is the offset to name, not to the 
global offset table entry for name.)

This causes a global offset table to be created.

name@PLT This evaluates to the offset from the current PC to the entry 
for name in the procedure linkage table.

This causes a procedure linkage table and a global offset 
table to be created.

An entry for name in the global offset table is created if one 
does not already exist. At program load time, the entry for 
name in the global offset table will not necessarily contain 
the absolute address of name, it may instead contain the 
address of a fix up function that resolves the absolute 
address of name, updates the global offset table entry, and 
then passes control to name.

An entry for name in the procedure linkage table is created 
if one does not already exist.

_GLOBAL_OFFSET_TABLE_ This evaluates to the offset from the current PC to the 
global context pointer. The global context pointer may be 
the beginning of the global offset table, or it may be biased 
from the beginning of the global offset table.

This causes a global offset table to be created.
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4.2 Position-independent function prolog
If a position-independent function needs access to the global offset table, it must initialize 
the GP register (R12) to be the global context pointer. R12 is a callee-save register, so it 
must be saved to the stack before being initialized, and restored in the function epilog. As it 
is preserved across function calls, once R12 is initialized in the function prolog, it retains that 
value throughout the function body.

Figure 6 shows an SH-4 position-independent function prolog that saves R12 on the stack, 
sets up the global context pointer, and allocates 16 bytes for local variables in the stack 
frame.

Figure 6. SH-4 position-independent function prolog

4.3 Data access
In the SH-4 architecture, memory is accessed using load and store instructions. These 
instructions cannot directly hold an absolute address, so a program normally computes an 
address into a register.

4.3.1 Absolute data access

Table 10 shows SH-4 code sequences for absolute load and store.

         

fn: MOV.L R12,@-R15
MOVA .L1,R0
MOV.L .L1,R12
ADD R0,R12
ADD #-16,R15
...
.align 2

.L1:.long _GLOBAL_OFFSET_TABLE_

Table 10. SH-4 absolute load and store

C code SH-4 assembly code

extern int src;
extern int dst;
extern int *ptr;

ptr = &dst; MOV.L .L2,R2
MOV.L .L3,R1
MOV.L R2,@R1



SH-4 Generic and C Specific ABI Coding examples

7839242 Rev 2 31/38

4.3.2 Position-independent data access

Position-independent code cannot contain absolute data addresses, instead the absolute 
data addresses are contained in the global offset table. A pointer to the global offset table is 
held in R12. Position-independent code accesses the global offset table entries using 
offsets from this global context pointer.

Table 11 shows SH-4 code sequences for position-independent load and store.

         

*ptr = src; MOV.L .L4,R1
MOV.L @R1,R1
MOV.L .L3,R2
MOV.L @R2,R2
MOV.L R1,@R2

...

.align 2
.L2:.long dst
.L3:.long ptr
.L4:.long src

Table 10. SH-4 absolute load and store (continued)

C code SH-4 assembly code

Table 11. SH-4 position-independent load and store

C code Assembly code

extern int src;
extern int dst;
extern int *ptr;

ptr = &dst; MOV.L .L4,R0
MOV.L @(R0,R12),R2
MOV.L .L5,R0
MOV.L @(R0,R12),R1
MOV.L R2,@R1

*ptr = src; MOV.L .L6,R0
MOV.L @(R0,R12),R1
MOV.L @R1,R1
MOV.L .L5,R0
MOV.L @(R0,R12),R2
MOV.L @R2,R2
MOV.L R1,@R2

...

.align 2
.L4:.long dst@GOT
.L5:.long ptr@GOT
.L6:.long src@GOT
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4.3.3 Position-independent static data access

Accesses to externally visible data must use the global offset table entry, because dynamic 
linking may bind the entry to a definition outside of the compilation unit containing the 
access.

However, it is possible to optimize position-independent accesses to static data that is not 
visible outside of the compilation unit that defines it. This data is at a known offset from the 
global context pointer, so may be accessed relative to R12.

Table 12 shows SH-4 code sequences for position-independent access to static data visible 
only in one compilation unit.

         

Table 12. SH-4 position-independent static data access

C code Assembly code

static int src;
static int dst;
static int *ptr;

ptr = &dst; MOV.L .L4,R2
ADD R12,R2
MOV.L .L5,R0
MOV.L R2,@(R0,R12)

*ptr = src; MOV.L .L6,R0
MOV.L @(R0,R12),R1
MOV.L .L5,R0
MOV.L @(R0,R12),R2
MOV.L R1,@R2

...

.align 2
.L4:.long dst@GOTOFF
.L5:.long ptr@GOTOFF
.L6:.long src@GOTOFF
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4.4 Function calls

4.4.1 Absolute direct function call

On SH-4, absolute direct function calls may be made using BSR (if the target is within 
4 Kbytes of the call) or JSR. Table 13 shows SH-4 code sequences for absolute direct 
function calls.

         

4.4.2 Position-independent direct function call

Position-independent calls to static functions may be performed using a PC-relative call.

Position-independent calls to external functions are performed using the global offset table 
or the procedure linkage table. The address of the function is resolved by the dynamic linker.

Position-independent calls to externally visible functions must also be performed using the 
global offset table or the procedure linkage table, because dynamic linking may bind the 
name to a function outside of the compilation unit performing the call.

Calling using the procedure linkage table entry has the advantage that resolution of the 
function address can be delayed until the first time the function is actually called, rather than 
at the time the code is loaded. This reduces program load time. Calling the procedure 
linkage table also sometimes requires fewer instructions at the call site, leading to better 
code density. However, every call must also execute the instructions in the procedure 
linkage table entry, which means that more instructions are executed per call.

An alternative is to load the function address from the global offset table and then call it 
using an indirect call. This requires fewer instructions to be executed per call. Normally, this 
sequence would require the function address held in the global offset table to be resolved at 
load time, increasing program load time even when the function is never called. However, 
the notation name@GOTPLT can be used for direct calls, to indicate that lazy resolution can 
be used for name. This allows the global offset table entry for name to initially contain the 
address of the run-time address resolution function. The first time a call to name occurs, the 
run-time address resolution function is called instead. The run-time address resolution 
function resolves the address of name, updates the global offset table entry for name, and 
then calls name. 

However, the compiler should not use the address loaded with name@GOTPLT for multiple 
calls to name, unless it can guarantee that name has been called previously. This is because 

Table 13. SH-4 absolute direct function call

C code Assembly code

extern void foo(void);

foo(); foo known to be within 4 Kbytes of call site
BSR foo
NOP

foo(); foo may be more than 4 Kbytes from call site

MOV.L .L2,R1
JSR @R1
NOP
....
.align 2

.L2:.long foo
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if name has not been called previously, the address loaded is the address of the run-time 
address resolution function, rather than the true address of name. On each call of that 
address, the run-time address resolution function is called to resolve the address of name. 
Although this operates correctly, it will be very slow.

Table 14 shows SH-4 code sequences for position-independent direct calls.

         

Table 14. SH-4 position-independent direct function call

C code Assembly code

static void sfoo(void);
extern void efoo(void);

sfoo(); MOV.L .L4,R1
BSRF R1
NOP

.L0:
...
.align 2

.L4:.long sfoo - .L0

efoo(); Using procedure linkage table
MOV.L .L4,R1
BSRF R1
NOP

.L0:
...
.align 2

.L4:.long efoo@PLT+(.-.L0)

efoo(); Using global offset table directly
MOV.L .L4,R0
MOV.L @(R0,R12),R1
JSR @R1
NOP
...
.align 2

.L4:.long efoo@GOTPLT
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4.4.3 Indirect function call

On SH-4, indirect function calls may be made using JSR. Table 15 shows SH-4 code 
sequences for indirect function calls.

         

4.5 Branching
On SH-4, the conditional branch instructions, BF and BT, can be used to branch to a 
location 256 bytes in either direction. These instructions are PC-relative, and can be used 
for both absolute and position-independent code. For destinations that are more than 
256 bytes away, it is possible to use a conditional branch over an unconditional branch.

The unconditional branch instruction, BRA, can be used to branch to a location 4 Kbytes in 
either direction. This instruction is PC-relative, and can be used for both absolute and 
position-independent code. For destinations that are more than 4 Kbytes away, JMP or 
BRAF may be used. JMP may only be used in absolute code. BRAF is PC-relative, and so 
may be used in position-independent code.

Table 16 shows some code sequences for branching on SH-4.

Table 15. SH-4 absolute indirect function call

C code Assembly code

extern void (*ptr)(void);

(*ptr)(); Absolute addressing:
MOV.L .L2,R1
MOV.L @R1,R1
JSR @R1
NOP
...
.align 2

.L2:.long ptr

(*ptr)(); Position-independent addressing:
MOV.L .L4,R0
MOV.L @(R0,R12),R1
MOV.L @R1,R1
JSR @R1
NOP
...
.align 2

.L4:.long ptr@GOT
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Table 16. SH-4 branching

C code Assembly code

label:
...

goto label; label within 4 Kbytes:
BRA label
NOP

goto label; label further than 4 Kbytes away, absolute 
addressing

MOV.L .L4,R0
JMP @R0
NOP

.align 2
.L4:.long label

goto label; label further than 4 Kbytes away, position-
independent addressing

MOV.L .L4,R0
BRAF @R0
NOP

.L0:
.align 2

.L4:.long label-.L0
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5 Revision history

         

Table 17. Document revision history

Date Revision Changes

24-Apr-2005 A Initial release.

18-Oct-2011 2

Minor changes throughout
Added Section 1.8: DWARF register assignments on page 10.
Corrected the value of “S” in Section 3.3: Relocations involved in 
dynamic linking on page 25.
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